A three by three Pascal matrix representations of the generalized Fibonacci and Lucas sequences
نویسندگان
چکیده
منابع مشابه
The Generalized Pascal Matrix via the Generalized Fibonacci Matrix and the Generalized Pell Matrix
In [4], the authors studied the Pascal matrix and the Stirling matrices of the first kind and the second kind via the Fibonacci matrix. In this paper, we consider generalizations of Pascal matrix, Fibonacci matrix and Pell matrix. And, by using Riordan method, we have factorizations of them. We, also, consider some combinatorial identities.
متن کاملMatrix Powers of Column-justified Pascal Triangles and Fibonacci Sequences
It is known that if Ln, respectively Rn9 are n x n matrices with the (/, j ) * entry the binomial coefficient (y~l)? respectively (^l)), then Ln = In (mod 2), respectively R„=In (mod 2), where In is the identity matrix of dimension n>\ (see, e.g., Problem PI 073 5 in the May 1999 issue of Arner. Math Monthly). The entries of Ln form a left-justified Pascal triangle and the entries of Rn result ...
متن کاملa comparative study of the theme of "marriage" in three victorian novelists: charles dickens, george eliot and thomas hardy
این تحقیق کوشیده است با انتخاب پنج رمان از میان آثار برگزیده، «چارلز دیکنز»، «جورج الیوت» و «توماس هاردی » و با رویکردی تطبیقی به بررسی درونمایه ی «ازدواج» در آثار این سه رمان نویس بزرگ دوره ی ویکتوریا بپردازد. فرضیه ی اولیه ی تحقیق این بوده است که چارلز دیکنز (1870- 1812) با زبانی شوخ و گزنده، جورج الیوت(1880- 1819) با نگاهی آموزشی–اندرزگونه و توماس هاردی(1928- 1840) با رویکردی تلخ وانتقادی به...
Some Identities for Generalized Fibonacci and Lucas Sequences
In this study, we define a generalization of Lucas sequence {pn}. Then we obtain Binet formula of sequence {pn} . Also, we investigate relationships between generalized Fibonacci and Lucas sequences.
متن کاملFibonacci and Lucas Sums by Matrix Methods
The Fibonacci sequence {Fn} is defined by the recurrence relation Fn = Fn−1+ Fn−2, for n ≥ 2 with F0 = 0 and F1 = 1. The Lucas sequence {Ln} , considered as a companion to Fibonacci sequence, is defined recursively by Ln = Ln−1 + Ln−2, for n ≥ 2 with L0 = 2 and L1 = 1. It is well known that F−n = (−1)Fn and L−n = (−1)Ln, for every n ∈ Z. For more detailed information see [9],[10]. This paper pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics
سال: 2020
ISSN: 2651-477X
DOI: 10.15672/hujms.481026